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Abstract 

An information theory approach is devised in order 
to obtain crystallite size distributions from X-ray line 
broadening. The method is shown to be superior to 
those based on Fourier expansions, as illustrated by 
numerical examples and a realistic situation. The 
powder model of Warren and Averbach is considered, 
in which the sample is thought of as a 'column-like' 
structure of u.sfit cells perpendicular to the diffraction 
plane. Errors in excess of 100% arise as a result of 
truncating the diffraction peak. It is shown that, with 
the present approach, the corresponding figure is 
reduced to 5%, which confirms the power of informa- 
tion theory, and makes this method especially con- 
venient in those cases in which there are large overlaps 
between the tails of two diffraction peaks. 

I. Introduction 

Information theory (IT), after the pioneer work of 
Shannon (1948), has been extensively applied to a 
wide range of problems (see Brillouin, 1962; Alhassid 
& Levine, 1977, 1978, 1979; Levine, Steadman, Karp 
& Alhassid, 1978; Grandy, 1980; and references 
therein; Otero, Proto & Plastino, 1981). Statistical 
mechanics has received fruitful contributions from 
this standpoint (e.g. Jaynes, 1957, 1963, 1979; Katz, 
1967). Some quantum problems have also been 
tackled within its framework (see, for instance, Otero, 
Plastino, Proto & Zannoli, 1982, 1984). Applications 
to crystallography should be mentioned as well (see 
Diamond, 1963; Tsoucaris, 1970; de Rango, Tsoucaris 
& Zelwer, 1974; Hosoya & Yokonami, 1967; Wilkins, 
Varghese & Lehm~nn, 1983; Piro, 1983; Bricogne, 
1984). 
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It is the purpose of the present contribution to 
investigate to what extent IT concepts can be 
employed in order to determine, starting from diffrac- 
tion experiments, crystallite sizes (CS). Recourse to 
Bienenstock's relationship (see Bienenstock, 1961, 
1963), using the Fourier coefficients of the diffraction 
peaks (Bertaut, 1949; Warren & Averbach, 1950), is 
at present the main method for determining the CS 
distribution through powder diffraction. We shall 
attempt the formulation of an alternative method 
utilizing IT ideas in conjunction with the powder 
model of Warren & Averbach (1950). 

In this model, the sample is thought of as a 'column- 
like' structure of unit cells perpendicular to the 
diffracting planes. Each column makes an indepen- 
dent contribution to the powder diffracting power. 
The column length is given by the number of cells, 
N, that characterizes it. The length distribution, y(N),  
is, however, unknown (in principle). 

The paper is organized as follows: A brief overview 
of basic IT concepts is given in § 2.1, while their 
application for the present purposes is developed in 
§ 2.2. Our formalism is illustrated in § 3 by reference 
to the simulation of two different experimental situ- 
ations. Some results corresponding to an actual 
experimental situation are outlined in § 4. Some con- 
clusions are drawn in § 5 and a rigorous presentation 
of the theoretical foundations of our approach can 
be found in the Appendix. 

2. Formalism 

2.1. Some basic IT concepts 

We will present here a brief review of those IT 
aspects relevant for our present purposes. For a 
thorough discussion the reader is referred to Jaynes 
(1963, 1979) and Katz (1967). Within the IT 
framework, the density matrix ~ is constructed 
according to a well defined prescription, starting from 
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the knowledge of the expectation values of M 
operators Gi: 

(t~3 = g,, i=  1 , 2 , . . . , M .  (2.1) 

The statistical operator (or density matrix) ~ is then 
given by 

M 

/~=exp (Ao- £ A,Gi), (2.2) 
i = I  

in terms of M + 1 lagrange multipliers A~, which are 
determined so as to fulfill the set of equalities (2. I), i.e. 

(Gi)=tr(pGi)=gi, i=  1 , 2 , . . . ,  M, (2.3) 

and the normalization condition 

t r ~ = l .  (2.4) 

The operator constructed in this fashion maximizes 
the entropy 

S(~) = - k  tr ~ In p, (2.5) 

subject to the constraints (2.3) and (2.4) (k is 
Boltzmann's constant). The latter allows one to 
express the Lagrange multiplier A0 in terms of the M 
Lagrange multipliers h i , . . . ,  AM: 

Ao(A1,...,AM)------lntrexp - ~ Ai , (2.6) 
i = l  

while, from (2.3), we find 

axo/aX, = gi, i=  1 , . . . ,  M, (2.7) 

which provides us with a set of differential equations 
for the Ai in terms of the 'input' information contained 
in the quantities gi. Let us now consider an operator 
tgk that does not belong to the set {Gi} discussed 
above. IT provides us with a statistical inference 

A 

method that predicts its expectation value (Ok) to be 
given by 

A A A 

( O k )  = tr pOk 

=t r  e x  Ao- E AiGi0k • (2.8) 
i = l  

2.2. Present approach 
In the classic paper of Warren & Averbach (1950) 

a method was developed for the determination of 
crystallite sizes in a powder sample by means of 
Fourier analysis of X-ray diffraction peaks. The basic 
idea of Warren & Averbach is that of depicting the 
sample as a column-like structure of unit cells perpen- 
dicular to thediffracting plane, in which each column 
makes an independent contribution to the powder 
diffracting pattern. In many-body language, this is a 
single-particle model, in which each column makes 
its 'single'-contribution to the measured intensity 
I(to) corresponding to a given incident angle 0, where, 

for the case of 'oriented' samples, 

t o = h-12"n'd sin 0 (2.9) 

(d is the interplanar spacing and h the corresponding 
wavelength). Out of a column of N cells an interfer- 
ence function G(N, to) arises (see James, 1954) of 
the form 

G(N, to)= sin 2 (Nto)/sin 2 to, (2.10) 

and the basic fact to be taken into account is that the 
intensity I(to) observed at the angle to is proportional 
to the mean value of G at this angle. Correspondingly, 
I(to) is to be written in the following fashion: 

co  

I(to) = K Y~ T(N)G(N, to), (2.11) 
N = I  

K being a slowly varying function of angle, which 
usually can be considered a constant over the range 
of interest. 

Our 'leit-motiv' here is that of proposing a statistical 
inference method based upon IT in order to predict 
the distribution function T(N) on the basis of the 
measurement of the I (toi) for a small number of angles 
toi. This inference method can be formulated in field- 
theoretical language, employing second quantization 
and other standard tools of the many-body theorist. 
This allows for great generality, with immediate appli- 
cations to related problems. As not every reader has 
the time or the necessity to be bothered with abstract 
considerations not obviously relevant to the problem 
at hand, we shall consign this general treatment to 
the Appendix, and present here a more direct 
approach. 

We shall try to approximate the unknown iength 
distribution T(N) by means of a (classical) statistical 
function p(N) (see Katz, 1967) constructed, via IT 
concepts, on the basis of the measurement of I(toi) 
for a judiciously chosen set of angles toi. Con- 
sequently, we rewrite (2.11), for each angle toi, in the 
following fashion 

I(toi)=K ~ p(N)G(N, toi), (2.12) 
N = I  

so that, by discretization of the intensity variation 
(this entails the selection of a finite set of M angles 
toi) we generate M equations of the type (2.12). These 
are now to be interpreted, according to IT, as provid- 
ing the 'input' [cf. (2.1)] necessary to build up the 
statistical function p(N) in the form (see Katz, 1967) 

p(N) e x p ( A o ) e x p - j = l  

-h°=ln{ ~ = 

(2.13) 

(2.14) 
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The set of  equations (2.7) holds both in the classical 
[statistical function p ( N ) ]  and in the quantum 
(density operator, density matrix p) cases. The set 
(2.7) is then immediately available and allows one to 
evaluate the Ai, which in turn completely determines 
the statistical function p maximizing the statistical 
entropy. Summing up, on the basis of M measure- 
ments I(Oi) we are able to construct the statistical 
function p(N) and would, consequently, be in a 
position to predict the outcome of a measurement 
performed at angle OM+I, say, not included in our 
initial data set 

I(q~M+~) = K ~ p(N)G(N,  ~M+1) 
N = I  

= e x p ( h 0 ) K  N=~ }-" exp - j=hjG(N,~ j )  

x G(N,  ~,M+,). (2.15) 

If this prediction turns out to be right, that is, if it 
is experimentally verified a posteriori, then we may 
conclude that we have been able to obtain, by means 
of this statistical inference approach, a good rep- 
resentation of y(N).  If predictions of the type (2.15) 
turn out, on the other hand, to be consistently wrong, 
this can only mean that some relevant information 
has been left out. The very experiments that prove 
our predictions (2.15) wrong supply new information, 
and with this information we may try again [for a 
'better'  p(N) and so on]. If for a given selection of 
the initial input I(~i)  we finally achieve a good rep- 
resentation of y(N),  we will be in a position to 
determine the mean number of cells per column: 

( g )  = exp (ho) 2 exp biG(N, ~j) g 
N = I  "= 

= Y. o ( N t N .  (2.16/ 
N = I  

It will be shown in § 3 that the proposed approach 
is of practical value, and that a small (judiciously 
chosen) number M of angles ~i allows for a good 
description of y ( N ) .  

3 .  N u m e r i c a l  e x a m p l e s  

We shall illustrate the approach introduced in § 2.2 
by numerical simulation of two different experimental 
situations. 

3.1. A Gaussian distribution 

Let us consider a diffraction peak characterized by 
a Gaussian distribution y (N)"  

TO(N) = exp [ - o - ( N  - N o ) Z ] / E  exp [ - o - ( N  - N o ) 2 ] ,  
N 

(3.1) 

Table 1. 'Input': angles ~b,, Lagrange multipliers A,, 
constant K and mean cell number ( N) for the Gaussian 

distribution case of § 3.1 

Approximate 'Exact' 
values values 

K = 1079 
(N) = 3.42 

M ~b,(rad) A i 

1 A I = 0"033 
0 2 = 4 . 0 4  K = 1151 

( N ) = 3 . 5 5  

I 01=Tr  A1 =0 .039  K = l 1 5 1  
2 0 2 = 3 . 4 8  

/ A2 = -0.109 (N) = 3.53 
~. 0s = 4.04 

The last angle in the second column is the one employed in order 
to adjust K. M denotes the number of Lagrange multipliers 
employed in building up ~. 

where we take No=3 ,  o-=0-1 and K = l 1 5 1 .  The 
'true' mean number of cells per column arising in this 
case is ( N ) = 3 . 5 5 .  The 'diffraction peak'  that (3.1) 
generates via (2.11) is depicted in Fig. l (a ) .  

In order to test our procedure we start by consider- 
ing a statistical operator/~ of type (2.2) with M = 1 
(the simplest possible case). The whole problem 
reduces itself here to that of determining a single 
Lagrange multiplier Al. 

It is to be pointed out that the constant K in (2.11) 
is an arbitrary one, as, in measuring a diffraction 
peak, the corresponding intensity curve will always 
be multiplied by a constant factor determined by the 
experimental arrangement. As a bonus, our approach 
allows for the determination of K, as indicated below. 

We determine A l by numerically solving, for a 
selected angle ~bl, the equation 

oo 

I (~b , )=exp(ho)K E e x p [ - h , G ( N ,  O,) ]G(N,  0,),  
N = I  

(3.2t 

19.5. 

15.6 

11.7 

× 

7.8 
2 

l 

d, (rad) 

Fig. 1. Intensity l(0i). Curve (a) depicts the theoretical Gaussian 
pattern [cf (3.1)], while (b) and (c) are our approximate results 
obtained by employing, respectively, one and two multipliers in 
building up the statistical operator/~. 
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where I ( ~ )  is, of course, taken from our 'theoretical' 
experiment. It is apparent that we need another 
equation in order to fix /C By a judicious selection 
of another angle ¢2 we achieve this goal, with the net 
result that we have to deal with a set of two coupled 
equations of the type (3.2), one for ~ and the other 
for ¢2. If we take here ~b~ = 7r and 1~2  = 4.04 rad (in 
order to try to reproduce both the peak and the tail 
of the distribution), we obtain the diffraction pattern 
given by curve (b) of Fig. 1, which is not too bad an 
approximation to the 'true' one. The values of (N) 
and K thus obtained are compared to the 'exact' ones 
in Table 1, and are also seen to resemble them closely. 

If we work now with two Lagrange multipliers in 
order to improve our approach, we have to select 
three angles. The corresponding results are given in 
Fig. 1 and Table 1. In this case the approximate 
pattern is almost indistinguishable from the 'true' one. 
This can be confirmed by adding a third Lagrange 
multiplier: no noticeable improvements are obtained. 
The distributions 7 (N) :  exact, approximate (one 
multiplier) and approximate (two multipliers) are 
compared in Fig. 2. The improvement obtained by 
adding a second Lagrange multiplier is clearly seen. 

3.2. A normal-logarithmic distribution 

We consider now the case of a diffraction peak 
generated by 

yL(N) = exp {-[(In N - l n  No)/ln o']2/2} 

x exp {- [ ( ln  N - l n  No)/ln o']2/2} , 

(3.3) 

with No = 3, o" = 1.3, K = 1542 and ( N ) =  3.33. Fig. 
3(a) depicts the corresponding peak and Fig. 4(a) 

225 
\ \  

"~ .  a 

180, 

135- 

90" 

45 

N 

Fig. 2. Distributions y ( N ) .  Curve (a) is the one that generates 
the diffraction peak of  Fig. l ( a )  ('exact'), while (b) and (c) 
correspond to our approximate results obtained from a statistical 
operator t~ built up with one and two Lagrange multipliers, 
respectively. 

Table 2. 'Input': angles ~b~, Lagrange multipliers '~i, 
constant K and mean cell number ( N)  for the normal- 

logarithm distribution case of § 3.2 

M 0i(rad) 

f 01 = ~ 
1 

1,02=4.04 

{ 01=~ 

2 02=3"50 

03 =4"04 

Approximate 'Exact' 
Ai values values 

K =  1015 
3.1 =0.031 

(N) = 3.55 

A1 =0"163 K =  1539 
K =  1542 

3.2 = -0"658 (N)=3"31 

(N)=3-33 

01 = "iT 
At =0.144 

02 = 3"50 K = 1541 
3 3. 2 = -0.641 

03 = 4"27 (N) = 3.32 
3.3 = 0.642 

~b4 = 4-04 

The last angle in the second column is the one employed in order 
to adjust K. M denotes the number of  Lagrange multipliers 
employed in building up/3. 

displays TL(N). The curves that result in trying to 
represent the 'exact' (or 'true') results with our 
approach are labelled by the letters b, c, d and 
correspond to cases for which one employs, respec- 
tively, one, two and three Lagrange multipliers. The 
relevant figures are given in Table 2. It is seen that 
three multipliers are needed in order to obtain a 
satisfactory description. 

3.3. Effects of  a constant background 

Experimental diffraction patterns are affected by 
background effects that, in some circumstances, can 
be regarded as constant. In order to simulate such a 
constant background we added a constant BT to the 
intensity peak generated by the Gaussian distribution 
of Fig. 1. Taking as data four points of the correspond- 

19,5 

15,6- i~ ~ 

11,7- / i  

- 7,8. ] l 
b 

0 
" ~ ~ ~ 5 d~ (radi 

Fig. 3. Intensity I (~i)  for the normal-logarithm distribution of  
§ 3.2. Details are similar to those of  Fig. 1. Curve (d) corresponds 
to an approximate result obtained with three Lagrange multi- 
pliers. 
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ing curve, the following set of equations was gen- 
erated 

I(~b~)=BT+exp(ho) ~ exp[-h~G(N, 01) 
N = I  

-A2G(N, ff2)]G(N, O,), 

i =  1, 2 ,3 ,4 ,  (3.4) 

with 01=T r, @2=3.48rad, ~/,3=4.26rad and I / / 4 =  

4.04 rad. A satisfactory agreement, similar to that of 
Fig. 2 (case c), was obtained. For BT =200 our 
method yielded B~-PP = 197. 

4. A realistic situation 

In § 3 we have dealt with 'ideal'  numerically simulated 
experiments. This is the time-honoured procedure 
employed, in all branches of physics, to try new 
theoretical ideas. The reason for this approach is quite 
simple: one needs an 'exact'  solution with which to 
compare. Simple-minded comparison of theoretical 
approaches with raw data can lead to serious errors 
of interpretation. 

However, after such a test has been passed, com- 
parison with experiment is the next step. Here we 
shall present a few results obtained by applying our 
method to a concrete experimental situation. 

Fig. 5 displays the size distribution that we obtain 
by employing just three Lagrange multipliers, in the 
case of a montmorillonite sample for which the corre- 
sponding clay treatment is of special interest in view 
of its very small crystal size. The details of the corre- 
sponding experimental set-up as well as the treatment 
and results for a variety of samples will be published 
elsewhere. 

Concluding remarks 

The calculation of crystallite size distribution from 
X-ray line broadening by recourse to Fourier 
coefficients (see Bienenstock, 1961, 1963) is affected 
by errors that arise in truncating the diffraction peak. 
The careful study of Young, Gerdes & Wilson (1967) 
shows that a truncation of the order of 20% leads to 
size errors larger than 100%. With the present 
approach, the corresponding figure is of the order of 
a 5%, which obviously constitutes a sizeable improve- 
ment, and would make our method especially con- 
venient in those cases in which there are larger over- 
laps between the tails of two diffraction peaks. 

A salient aspect to be mentioned is that just a few 
Lagrange multipliers are needed in order to obtain a 
satisfactory description, which greatly simplifies the 
(non-linear) numerical problem one has to face. Even 
with just a single Lagrange multiplier the error in (N) 
is smaller than 7%. Our approach makes it quite easy 
to deal with a constant background. The so-called 
'hook effect', which plagues the Fourier method 
whenever 3,(1) is not a negligible quantity, is totally 
absent here. 

Summing-up, we believe that the statistical 
inference approach presented in this work may be 
regarded as a convenient tool for the calculation of 
crystallite size distributions. 

APPENDIX 

The method introduced in this paper can be rigorously 
founded by recourse to some elementary notions of 
field theory and linear algebra, which allow for 
immediate generalization to similar situations. We 
deal here with this type of approach, which, addi- 
tionally, clearly exhibits the fact that there exists a 

440 
\ 

J 8 

1 2 3 4 5 6 7 8 9 10 11 
N 

Fig. 4. Distributions 7(N) for the normal-logarithm case. Details 
are similar to those of Fig. 2. Curve (d) corresponds to a case 
in which three Lagrange multipliers are employed. 

1000[ 

800[ 

600 
% 

400 

2OO 

2 3 4 5 6 7 8 
N 

9 1'0 

Fig. 5. Distribution y(N) for a montmorillonite sample corre- 
sponding to a reflection 001. 
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consistent theory behind (2.11)-(2.16) and not a mere 
numerical algorithm that just happens to work. 

We start by introducing the diagonal matrix 

[N]  = 

~ 1 0 0  
0 2 0  
0 0 3  

0 0 0 0 

• 0 

• ° 0 

• 0 

0 n 0 i 
(A.1) 

such that its general element is [N]o = i$ o. We call 
Iv) the eigenvectors of [N]  and linear algebra tells 
us that there exists a linear operator N corresponding 
to [ N] ,  whose eigenvectors are also the kets Iv), such 
that 

~rl~)--- nlv) (A.2) 
(vl v') = 8~.v.. (A.3) 

Now field theory enters. If  we associate with the 
integer number n the number of cells per column, N 
becomes a number operator and the states Iv) span a 
(Fock) Hilbert space in which is represented the 
physics of our problem. Indeed, if we denote by ~i 
a variable that is unambiguously defined bay subindex 
i, we are entitled to define new operators Gi by means 
of analytical applications over N. We choose them 
to be of the form 

,A 

t~ = sin 2 (N~,) /s in  2 ~,. (A.4) 

and it is immediately apparent that the basis I v) 
diagonalizes the G~. This can be seen by series expand- 
ing the numerator of (A.4) 

G , = ( 1 / 2 s i n  2 tp , )  (-)r"(2NO,)2m/(2m)!, (A.5) 
m = l  

so that, obviously, 
oo 

t~, lv)=(1/Esin2O,)  Y~ (-)m[(En~b,)2m/(Em)!]lv) 
m = l  

= (s in  2 nOi/s in 2 0i)[v) .  (A.6)  

Thus we find ourselves dealing with a set 
{al,---, ai,..., GM, N} of mutually commuting 
operators, which are simultaneously diagonalized by 
the basis [v). The preceding considerations allow us 
now to cast the intensity corresponding to the angle 
0~ into quantum-statistical language [cfi (2.11)]: 

A A 
I(~b,) = K tr (pG,) (A.7) 

and write down the statistical operator p, according 
to the IT formalism, as the one that maximizes the 

statistical entropy subject to M constraints of the type 
(A.7) 

~ = e x p  (ho) exp l j  , (A.8) 

Ao = - l n  tr exp l j  . (A.9) 

Evaluating traces by recourse to sums over the basis 
Iv), we immediately obtain (2.12), (2.13) and (2.14). 
Moreover, (2.15) and (2.16) correspond to the Predic- 
tions that ~ enables one to make, that is 

A A 
I(~bM+I) = K tr (pGM+l) (A.IO) 

5 

and 
A A 

(~r) = tr (pN). ( A.11 ) 
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